Simulations Between Cellular Automata on Cayley Graphs
نویسنده
چکیده
We consider cellular automata on Cayley graphs and compare their computational powers according to the architecture on which t h e y work. We show that, if there exists a homomorphism with a nite kernel from a group into another one such that the image of the rst group has a nite index in the second one, then every cellular automaton on the Cayley graph of one of these groups can be uni-formally simulated by a cellular automaton on the Cayley graph of the other one. This simulation can be constructed in a linear time. With the help of this result we also show that cellular automata working on any Archimedean tiling can be simulated by a cellular automaton on the grid of Z 2 and conversely. R esum e Nous comparons la puissance de calcul des automates cellulaires agis-sant sur dii erents graphes de Cayley. N o u s m o n trons que, s'il existe un morphisme a n o yau ni d'un groupe dans un autre tel que l'indice de l'image du premier groupe est ni dans le deuxi eme, alors tout automate cellulaire sur le graphe de Cayley d'un de ces groupes peut-^ etre simul e par un automate cellulaire sur le graphe de Cayley de l'autre groupe avec un facteur de perte de temps lin eaire. Nous montrons aussi, que les automates cellulaires agissant sur les pavages Archim ediens peuvent ^ etre simul es par un automate cellulaire sur la grille de Z 2 et r eciproquement.
منابع مشابه
Neighborhood transformations on graph automata
We consider simulations of graph automata. We introduce two local transformations on the neighborhood: splitting and merging. We explain how to use such transformations, and their consequences on the topology of the simulated graph, the speed of the simulation and the memory size of simulating automata in some cases. As an example , we apply these transformations to graph automata embedded on s...
متن کاملSimulations of graph automata
We state a definition of the simulation of graph automata, which are machines built by putting copies of the same finite-state automaton at the vertices of a regular graph, reading the states of the neighbors. The graphs considered here are planar, with the elementary cycles of the same length, and form regular tilings of the hyperbolic plane. Thereafter, we present some results of simulation b...
متن کاملGeneralized Cayley Graphs and Cellular Automata over them
Cayley graphs have a number of useful features: the ability to graphically represent finitely generated group elements and their relations; to name all vertices relative to a point; and the fact that they have a well-defined notion of translation. We propose a notion of graph associated to a language, which conserves or generalizes these features. Whereas Cayley graphs are very regular; associa...
متن کاملOn the eigenvalues of normal edge-transitive Cayley graphs
A graph $Gamma$ is said to be vertex-transitive or edge- transitive if the automorphism group of $Gamma$ acts transitively on $V(Gamma)$ or $E(Gamma)$, respectively. Let $Gamma=Cay(G,S)$ be a Cayley graph on $G$ relative to $S$. Then, $Gamma$ is said to be normal edge-transitive, if $N_{Aut(Gamma)}(G)$ acts transitively on edges. In this paper, the eigenvalues of normal edge-tra...
متن کاملEnumerating planar locally finite Cayley graphs
We characterize the set of planar locally finite Cayley graphs, and give a finite representation of these graphs by a special kind of finite state automata called labeling schemes. As a result, we are able to enumerate and describe all planar locally finite Cayley graphs of a given degree. This analysis allows us to solve the problem of decision of the locally finite planarity for a word-proble...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theor. Comput. Sci.
دوره 225 شماره
صفحات -
تاریخ انتشار 1995